3 research outputs found

    Mobility, Expansion and Management of a Multi-Species Scuba Diving Fishery in East Africa

    Get PDF
    Background: Scuba diving fishing, predominantly targeting sea cucumbers, has been documented to occur in an uncontrolled manner in the Western Indian Ocean and in other tropical regions. Although this type of fishing generally indicates a destructive activity, little attention has been directed towards this category of fishery, a major knowledge gap and barrier to management. Methodology and Principal Findings: With the aim to capture geographic scales, fishing processes and social aspects the scuba diving fishery that operate out of Zanzibar was studied using interviews, discussions, participant observations and catch monitoring. The diving fishery was resilient to resource declines and had expanded to new species, new depths and new fishing grounds, sometimes operating approximately 250 km away from Zanzibar at depths down to 50 meters, as a result of depleted easy-access stock. The diving operations were embedded in a regional and global trade network, and its actors operated in a roving manner on multiple spatial levels, taking advantage of unfair patron-client relationships and of the insufficient management in Zanzibar. Conclusions and Significance: This study illustrates that roving dynamics in fisheries, which have been predominantly addressed on a global scale, also take place at a considerably smaller spatial scale. Importantly, while proposed management of the sea cucumber fishery is often generic to a simplified fishery situation, this study illustrates

    Effects of fishery protection on biometry and genetic structure of two target sea cucumber species from the Mediterranean Sea

    Get PDF
    Sea cucumber fisheries are now occurring in most of the tropical areas of the world, having expanded from its origin in the central Indo-Pacific. Due to the overexploitation of these resources and the increasing demand from Asian countries, new target species from Mediterranean Sea and northeastern Atlantic Ocean are being caught. The fishery effects on biometry and genetic structure of two target species (Holothuria polii and H. tubulosa) from Turkey, were assessed. The heaviest and largest individuals of H. polii were found into the non-fishery area of Kusadasi, also showing the highest genetic diversity. Similar pattern was detected in H. tubulosa, but only the weight was significantly higher in the protected area. However, the observed differences on the fishery effects between species, could be explained considering the different percentage of catches (80% for H. polii and 20% for H. tubulosa)

    Prevention and treatment of decompression sickness using training and in-water recompression among fisherman divers in Vietnam

    No full text
    © 2016 BMJ Publishing Group. All rights reserved. Introduction Many fisherman divers in Vietnam suffer from decompression sickness (DCS) causing joint pain, severe neurological deficit or even death. The objective of this pilot study was to evaluate the effectiveness of a training programme to prevent DCS and also treat DCS using the method of in-water recompression (IWR). Methods 63 divers were interviewed and trained over a period of 3 years from 2009. Fifty one per cent of all trained divers were reinterviewed in 2011–2012 to collect mortality and morbidity data as well as information on changes in diving practices. Results Since 2009, most fisherman divers have changed their practices by reducing bottom time or depth. Mortality was reduced and the incidence of severe neurological DCS decreased by 75%. Twenty four cases of DCS were treated by IWR. Ten cases of joint pain were treated with IWR using air, affording immediate relief in all cases. Out of 10 cases of neurological DCS, 4/4 recovered completely after IWR with oxygen whereas only 2/6 subjects recovered immediately after IWR with air. In addition, 3/4 further cases of DCS treated with IWR using oxygen immediately recovered. Conclusions Our results suggest that IWR is effective for severe neurological DCS in remote fishing communities, especially with oxygen
    corecore